Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 12(4): 491-507, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38289363

ABSTRACT

The development of first-generation immune-checkpoint inhibitors targeting PD-1/PD-L1 and CTLA-4 ushered in a new era in anticancer therapy. Although immune-checkpoint blockade therapies have shown clinical success, a substantial number of patients yet fail to benefit. Many studies are under way to discover next-generation immunotherapeutic targets. Immunoglobulin superfamily member 1 (IGSF1) is a membrane glycoprotein proposed to regulate thyroid function. Despite containing 12 immunoglobin domains, a possible role for IGSF1, in immune response, remains unknown. Here, our studies revealed that IGSF1 is predominantly expressed in tumors but not normal tissues, and increased expression is observed in PD-L1low non-small cell lung cancer (NSCLC) cells as compared with PD-L1high cells. Subsequently, we developed and characterized an IGSF1-specific human monoclonal antibody, WM-A1, that effectively promoted antitumor immunity and overcame the limitations of first-generation immune-checkpoint inhibitors, likely via a distinct mechanism of action. We further demonstrated high WM-A1 efficacy in humanized peripheral blood mononuclear cells (PBMC), and syngeneic mouse models, finding additive efficacy in combination with an anti-PD-1 (a well-characterized checkpoint inhibitor). These findings support IGSF1 as an immune target that might complement existing cancer immunotherapeutics.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immunoglobulins , Lung Neoplasms , Membrane Proteins , Animals , Humans , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , B7-H1 Antigen , Immune Checkpoint Inhibitors/therapeutic use , Immunoglobulins/metabolism , Immunotherapy , Leukocytes, Mononuclear , Lung Neoplasms/drug therapy , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism
2.
J Cell Mol Med ; 28(3): e18104, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183356

ABSTRACT

Alpha-2-Glycoprotein 1, Zinc-binding (AZGP1, ZAG) is a secreted protein that is synthesized by adipocytes and epithelial cells; it is downregulated in several malignancies such as breast, prostate, liver and lung cancers. However, its function remains unclear in cholangiocarcinoma (CCA). Here, we evaluated the impact AZGP1 in CCA using Gene Expression Omnibus (GEO) and GEPIA. In addition, we analysed AZGP1 expression using quantitative reverse transcription PCR and western blotting. Expression of AZGP1 was nearly deficient in CCA patients and cell lines and was associated with poor prognosis. AZGP1 overexpression upregulated apoptosis markers. Co-immunoprecipitation experiments showed that AZGP1 interacts with tripartite motif-containing protein 25 (TRIM25), and tissue microarray and bioinformatic analysis showed that AZGP1 is negatively correlated with TRIM25 expression in CCA. Thereafter, TRIM25 knockdown led to AZGP1 upregulation and induced cancer cell apoptosis. TRIM25 targets AZGP1 for degradation by catalysing its ubiquitination. AZGP1 overexpression significantly suppressed tumour growth in a xenograft mouse model. This study findings suggest that AZGP1 is a potential therapeutic target or a diagnostic biomarker for treating patients with CCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Male , Humans , Animals , Mice , Cholangiocarcinoma/metabolism , Cell Transformation, Neoplastic , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation/genetics , Tripartite Motif Proteins , Transcription Factors , Ubiquitin-Protein Ligases , Zn-Alpha-2-Glycoprotein
3.
Cell Death Differ ; 30(12): 2491-2507, 2023 12.
Article in English | MEDLINE | ID: mdl-37926711

ABSTRACT

Recepteur d'origine nantais (RON, MST1R) is a single-span transmembrane receptor tyrosine kinase (RTK) aberrantly expressed in numerous cancers, including various solid tumors. How naturally occurring splicing isoforms of RON, especially those which are constitutively activated, affect tumorigenesis and therapeutic response, is largely unknown. Here, we identified that presence of activated RON could be a possible factor for the development of resistance against anti-EGFR (cetuximab) therapy in colorectal cancer patient tissues. Also, we elucidated the roles of three splicing variants of RON, RON Δ155, Δ160, and Δ165 as tumor drivers in cancer cell lines. Subsequently, we designed an inhibitor of RON, WM-S1-030, to suppress phosphorylation thereby inhibiting the activation of the three RON variants as well as the wild type. Specifically, WM-S1-030 treatment led to potent regression of tumor growth in solid tumors expressing the RON variants Δ155, Δ160, and Δ165. Two mechanisms for the RON oncogenic activity depending on KRAS genotype was evaluated in our study which include activation of EGFR and Src, in a trimeric complex, and stabilization of the beta-catenin. In terms of the immunotherapy, WM-S1-030 elicited notable antitumor immunity in anti-PD-1 resistant cell derived mouse model, likely via repression of M1/M2 polarization of macrophages. These findings suggest that WM-S1-030 could be developed as a new treatment option for cancer patients expressing these three RON variants.


Subject(s)
Neoplasms , Animals , Mice , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Phosphorylation , Protein Isoforms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...